Scale-dependent erosional patterns in steady-state and transient-state landscapes

نویسندگان

  • Alejandro Tejedor
  • Arvind Singh
  • Ilya Zaliapin
  • Alexander L Densmore
  • Efi Foufoula-Georgiou
چکیده

Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landscape reorganization under changing climatic forcing: Results from an experimental landscape

Understanding how landscapes respond to climate dynamics in terms of macroscale (average topographic features) and microscale (landform reorganization) is of interest both for deciphering past climates from today’s landscapes and for predicting future landscapes in view of recent climatic trends. Although several studies have addressed macro-scale response, only a few have focused on quantifyin...

متن کامل

Single Server Bulk Queue with Service Interruption, Two Phase Repairs and State Dependent Rates

This paper reports a study on a single server queue with bulk arrival and bulk service patterns wherein the incoming traffic depends on the state of the server which may be in operating or breakdown state. The repair of the breakdown server is performed in two phases. The operating duration of server, repair duration of both phases of repairing as well as job's inter-arrival times and service t...

متن کامل

A nondimensional framework for exploring the relief structure of landscapes

Considering the relationship between erosion rate and the relief structure of a landscape within a nondimensional framework facilitates the comparison of landscapes undergoing forcing at a range of scales, and allows broad-scale patterns of landscape evolution to be observed. We present software which automates the extraction and processing of relevant topographic parameters to rapidly generate...

متن کامل

Transient Characteristics of a Single-Effect Absorption Refrigeration Cycle

This paper deals with a lumped-parameter dynamic simulation of a single-effect LiBr-H2O absorption chiller. In many studies the thermodynamic properties of LiBr-H2O solution were taken from some approximate relations causing the results to be somewhat inaccurate. These relations were used to solve simultaneous differential equations involving the continuity of species constituting the LiBr-H2O ...

متن کامل

شبیه سازی رفتار دستگاه بس ذره ای الکترونی (RTD) درحالت غیرتعادلی

  We inspected the exact solution of double barrier quantum well. The choice of proper boundary conditions has been taken into account. We eveluated the mechanism of resonant in this device. The density correlation matrix was calculated by using the exact solution of the time-dependent generalized nonlinear Schrodinger equation in the presence of electron-electron interaction. The result shows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017